Pumped helium system for cooling positron and electron traps to 1.2 K
نویسندگان
چکیده
Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen (H) atoms. H atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H atoms have only been produced within traps whose electrode temperature is 4.2 K or higher. A lower temperature apparatus is desirable if usable numbers of atoms that can be trapped are to eventually be produced. This report is about the pumped helium apparatus that cooled the trap electrodes of an H apparatus to 1.2 K for the first time. Significant apparatus challenges include the need to cool a 0.8 m stack of 37 trap electrodes separated by only a mm from the substantial mass of a 4.2 K Ioffe trap and the substantial mass of a 4.2 K solenoid. Access to the interior of the cold electrodes must be maintained for antiprotons, positrons, electrons and lasers. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
High Sample Rate Optically Pumped Helium Magnetometer
Optically pumped helium magnetometers are important instruments whichhave many applications in military, mass spectroscopy and space applications. In thispaper, the working principles of helium magnetometers have been explained. There isalso an introduction of a new method for finding the resonant frequency, which hasadvantages to the typical method such as more sample r...
متن کاملClosed - cycle gas flow system for cooling of high T , d . c . SQUID magnetometers
A high T, d.c. SQUID based magnetometer for magnetocardiography is currently under development at the University of Twente. Since such a magnetometer should be simple to use, the cooling of the system can be realized most practically by means of a cryocooler. A closed-cycle gas flow cooling system incorporating such a cooler has been designed, constructed and tested. The aimed resolution of the...
متن کاملEUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-AT DIVISION CERN/ AT-CR/92-1 Process Control Methods for Operation of Superconducting Cavities at the LEP Accelerator at CERN
The aim of this work is to analyse the cryogenic process for cooling superconducting radio-frequency accelerator prototype cavities in the Large Electron-Positron collider (LEP) at CERN. A liquefaction cryoplant is analysed, including the production of liquid helium at 4.5 K, the systems for distribution and control of liquid helium, and the radio-frequency system used for accelerating particle...
متن کاملDesign of a kJ-class HiLASE laser as a driver for inertial fusion energy
We present the results of performance modeling of a diode-pumped solid-state HiLASE laser designed for use in inertial fusion energy power plants. The main amplifier concept is based on a He-gas-cooled multi-slab architecture similar to that employed in Mercury laser system. Our modeling quantifies the reduction of thermally induced phase aberrations and average depolarization in Yb3+:YAG slabs...
متن کاملThe Tesla Cryogenic Accelerator Modules
The Tera-eV Energy Superconducting Linear Accelerator (TESLA), a 32 km long superconducting linear electron/positron collider of 500 GeV (upgradeable to 800 GeV) centre of mass energy, presently in the planning phase at DESY, will consist of about 21000 superconducting RF 9-cell cavities of pure Niobium. Each cavity of about 1 m length has to be cooled in a 2.0 K helium bath and operated at 1.3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011